Woven Nanotube Carbon Fibres Turn Heat into Power
- Posted by doEEEt Media Group
- On October 4, 2021
- 0
Invisibly tiny carbon nanotubes aligned as fibers and sewn into fabrics become a thermoelectric generator that can turn heat from the sun or other sources into energy. The Rice University lab of physicist Junichiro Kono led scientists at Tokyo Metropolitan University and the Rice-based Carbon Hub to make custom nanotube fibers and test their potential for large-scale applications.
Their small-scale experiments led to a fiber-enhanced, flexible cotton fabric that turned heat into enough energy to power an LED. They say such materials could become building blocks for fiber and textile electronics and energy harvesting with further development.
The same nanotube fibers could also be used as heat sinks to cool sensitive electronics with high efficiency. A paper about the project appears in Nature Communications.
The effect seems simple: If one side of thermoelectric material is hotter than the other, it produces energy. The heat can come from the sun or other devices like the hotplates used in the fabric experiment. Conversely, adding energy can prompt the material to cool the hotter side.
Until now, no macroscopic assemblies of nanomaterials have displayed the necessary “giant power factor,” about 14 milliwatts per meter kelvin squared, that the Rice researchers measured in carbon nanotube fibers.
The source of this superpower also relates to tuning the nanotubes’ inherent Fermi energy, a property that determines electrochemical potential. The researchers were able to control the Fermi energy by chemically doping the nanotubes made into fibers by the Rice lab of co-author and chemical and biomolecular engineer Matteo Pasquali, allowing them to tune the fibers’ electronic properties.
While the fibers they tested were cut into centimeter lengths, Komatsu said there’s no reason devices can’t make use of the excellent nanotube fibers from the Pasquali lab that are spooled in continuous measurements. “No matter where you measure them, they have the same very high electrical conductivity,” she said. “The piece I measured was small only because my setup isn’t capable of measuring 50 meters of fiber.”
Pasquali is director of the Carbon Hub, which promotes expanding the development of carbon materials and hydrogen to change how the world uses fossil hydrocarbons fundamentally.
Whether the new research leads to a solar panel you can throw in the washing machine remains to be seen, but Kono agreed the technology has excellent and varied potential.
Co-authors of the paper are Rice graduate students Oliver Dewey, Lauren Taylor, and Mitchell Trafford and Geoff Wehmeyer, an assistant professor of mechanical engineering; and Yota Ichinose, Professor Yohei Yomogida, and Professor Kazuhiro Yanagi of Tokyo Metropolitan University.
Kono is the Karl F. Hasselmann Professor in Engineering and a professor of electrical and computer engineering, physics and astronomy, and materials science and nanoengineering. Pasquali is the A.J. Hartsook Professor of Chemical and Biomolecular Engineering and a chemistry and materials science and nanoengineering professor.
The Department of Energy Basic Energy Science program, the National Science Foundation, the Robert A. Welch Foundation, the Japan Society for the Promotion of Science, the U.S. Air Force, and the Department of Defense supported the research.
- Filtering Characteristics of Parallel-Connected Fixed Capacitors in LCC-HVDC - November 21, 2024
- ALTER SPACE TEST CENTER: testing approaches for New Space - September 30, 2024
- Failure Mechanism of Metallized Film Capacitors under DC Field Superimposed AC Harmonic - September 5, 2024
0 comments on Woven Nanotube Carbon Fibres Turn Heat into Power